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Nonlinear systems with correlated stochastic parameters are approximated by 
simpler systems. This method is an extension of an earlier version of statistical 
replacement and statistical linearization. The extended method is applicable to 
systems with correlated fluctuations. We show how this general method reduces 
to the earlier methods in special cases. 
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1. I N T R O D U C T I O N  

Stochastic differential equat ions (SDEs)  play an impor tan t  role in the 
theoretical s tudy of physical and chemical phenomena.  Difficulties often 
arise in solving these equat ions for at least two reasons. First, a lmost  all 
realistic equat ions are nonlinear,  thereby preventing an exact closed 
solution. A related point  is that  the equat ions involve nonaddit ive fluc- 
tuations, i.e., the fluctuating terms in general depend (often mul- 
tiplicatively) on the dynamical  variables under  consideration. Second, the 
r andom noise is invariably correlated at different times. Al though the 
correlat ion times of  these fluctuations are often (but not  always) small, the 
finite correlat ion times can often have an impor tan t  effect on the behavior  
of observables and should therefore be included for quanti tat ive analysis. 

In the past few years a great deal of work has been done ~1-3) on non-  
linear SDEs with colored multiplicative fluctuations. Part icular  at tention 
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has been devoted to the development of methods (approximate and exact) 
to handle the colored noise in these systems. On the other hand, little has 
been done to develop methods to deal with the nonlinearities in the 
equations. Often nonlinear differential equations are solved numerically. 
However, in the case of stochastic equations the Monte Carlo numerical 
method involves the calculation of the trajectory corresponding to each 
realization of a large (ideally infinite) ensemble of the random functions. 
The significant quantities are obtained by averaging over the ensemble of 
realizations. To avoid the high cost of such simulation procedures, it is 
desirable to develop approximation techniques for studying selected 
moments of the equilibrium and time-dependent distributions that are 
associated with the nonlinear SDEs. 

A technique used for this purpose is called statistical linearization. (4 6) 
Since a linear SDE can be solved in closed form, the tactic is to find the 
most suitable linear equation that reproduces the essential features of the 
nonlinear equation as closely as possible. The linear equation is 
parametrized by the coefficients of the zeroth and first powers of the 
dynamical variables. These parameters are adjusted by the linearization 
scheme in such a way that the mean square difference between the linear 
and nonlinear equations is the minimum possible. In a recent paper (7) we 
extended this method in several ways and the extended method was called 
statistical replacement. First of all, we noted that unlike statistical 
linearization, the replacement equation need not be linear. It can be any 
SDE that is exactly soluble. We used a thermodynamic criterion to choose 
this replacement equation so that certain important qualitative features are 
shared by the original and replacement equations. Statistical replacement is 
applicable to systems with any number of degrees of freedom, provided the 
replacement equation also contains the same number of degrees of freedom. 
The most significant extension is for equations with multiplicative fluc- 
tuations. All previous authors had used statistical linearization for single 
Langevin equations with additive noise delta-correlated in time. Despite 
the extension provided by our statistical replacement technique, the restric- 
tion to delta-correlated fluctuations remains. Moreover, the scheme was 
based on a separate treatment of drift and diffusion contributions. This 
separation was based on heuristic arguments. That scheme reproduces the 
lowest few moment equations exactly. We also reported some numerical 
examples in which the agreement between the approximate and exact 
results was excellent. 

Here we extend statistical replacement to a more general class of SDEs 
[involving at most a first-degree polynomial in the noise; see Eq. (2.1) 
below]. We first develop a method for equations with correlated noise. We 
find that in the white noise limit the new scheme differs from the one repor- 
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ted earlier. Since the new scheme is based on more general considerations 
and lacks the heuristic separation of drift and diffusion contributions, it is 
an improvement over the previous one. However, practical use of both 
schemes usually involves only the lowest moment equations and both 
schemes reproduce these moment equations exactly. 

In Section 2 we present a general derivation of formal equations for 
the variational parameters and show how the exact moment equations 
immediately follow from the scheme. In Section 3 we take the white noise 
limit of the new scheme and obtain practical expressions for the 
parameters. Sections 4 and 5 are comparisons of the new white noise limit 
with our earlier scheme. There we also rederive some of the conclusions 
arrived at earlier in the light of the new approach. In Section 6 we show 
how to make practical use of the method for the linearization of equations 
with exponentially correlated noise. The Gaussian property of the solution 
of the linearized equation is used to close the moment equations. Finally, 
we show a numerical example in Section 7, and Section 8 contains some 
final remarks. 

2. A GENERAL S C H E M E  FOR STATISTICAL REPLACEMENT 

Our goal in this paper is to reduce to a tractable form equations of the 
general type 

= V(x) + g(x) n(t)  (2.1) 

where q(t) is taken as a vector random function of time with as yet 
unspecified statistical properties. Following the theme of the traditional 
method of statistical linearization, we propose to replace Eq. (2.1) with a 
linear equation of the form 

~: = ~(t) + p(t) x + 7(t) q(t)  (2.2) 

The coefficients a, il, and 7 are to be determined by an appropriate error 
minimization technique. In Ref. 7, we showed in the case of white noise 
that it is easy to extend these methods to cases where the replacement 
equation can also be a tractable nonlinear equation instead of Eq. (2.2). 
However, since most replacements are linear in practice, let us confine 
ourselves to linearization for our present purposes. We will briefly discuss a 
nonlinear replacement in Section 5. As noted in Ref. 7, the replacement 
(2.2) is appropriate only if the process x(t) has finite first- and second- 
order moments, and we therefore confine ourselves to such processes. 
Systems with low-order instabilities should be replaced with simpler 
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systems that exhibit similar instabilities. Proceeding formally, the error 
made in the replacement is obtained as 

e ( t )  = r  + ]](t) x - F ( x )  + [y( t )  - g(x)3  ll(t) (2.3) 

When g(x) is independent of x, it is customary to leave the noise term 
undisturbed. In this case y ( t ) -  g(x) in Eq. (2.3) would vanish and thus 
would not involve the noise q(t) explicitly. Here we do wish to replace the 
functional dependence of g on x with an x-independent y(t) and therefore 
~l(t) is present in e. The parameters c~i, flu, and 70 at a given time are 
selected in order to minimize the mean square error <eiej> at that instant 
of time, where the brackets <-)  denote an average over an ensemble of 
the fluctuations ll(t). Hence we obtain variational equations for these 
parameters at each time. They are 

a + l ~ < x >  + y < q >  = < V > +  < g q >  (2.4) 

a<xT> +p<xxT> +y<qxT> = <FxT> + <gqxT> (2.5) 

a<qT> + p<xqT> +y<qqT> = <FqT> + <gqq~> (2.6) 

where T denotes the transpose. 
The parameters are to be fixed by solving these equations. We do this 

in later sections. Here we note that these formal equations are sufficient to 
show that Eq. (2.2) exactly reproduces the first and second moment 
equations corresponding to Eq. (2.1). The moment equations from Eq. (2.1) 
are 

d 
dt ( x )  = ( F )  + (gq )  (2.7) 

d 
dt <xxT> = <xVT> + <FxT> + <xqTgT> + <gqxT> (2.8) 

Those obtained from Eq. (2.2) are 

d 
dt ( x )  = a + p < x )  +y<q> (2.9) 

d <xxT > = ~<xT > + <x > ~ +  p<xxT> + <xxT> p~ 
dt 

+~,<qxT> <xq%~t T (2.10) 

Equations (2.7) and (2.8) are formally identical to (2.9) and (2.10) by vir- 
tue of Eqs. (2.4) and (2.5). In practice this identity can of course not be 
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implemented, because one does not know how to solve (2.1) and therefore 
one does not know the dependence of x on q(t) implicit in the nonlinear 
equation (2.1) (cf. Section 3). 

We obtained three sets of algebraic equations for fixing three sets of 
parameters. We have shown that two moment equations are exactly 
reproduced. An interesting question is whether there is another feature of 
the original equation that is exactly reproduced by the approximating 
equations. This question can be answered by considering the evolution of 
the quantity (Xllr>. From Eq. (2.1) we have 

d 
d-t (xqr>  = (xqr>  + ( F q r >  + (gqqr> (2.11) 

and from Eq. (2.2) 

d 
d-~ <xqT> = <xq% + ct<q~> + p<xq~> + ~,<qn~> (2.12) 

Equations (2.11) and (2.12) are identical by virtue of (2.6). Therefore, the 
present linearization scheme formally reproduces the evolution equations 
for the first- and second-order quantities (x>, (xxr>,  and ( x q r ) .  

3. WHITE  NOISE L IMIT  

To compare with previously established results, we now specialize the 
general scheme of the last section to the case where q(t) goes to the limit of 
a delta-correlated noise. Thus, we wish to take the limit q(t) --* {(t), where 

({ ( t ) )  = 0  (3.1) 

({(t) {r(t + t ' ) )  = 2D3(t') (3.2) 

Then Eq. (2.1) is 

(S) i = F ( x ) + g ( x )  ~(t) (3.3) 

where (S) denote that the equation is written in Stratonovich calculus. 
The tinearization scheme of Eqs. (2.4)-(2.6) involves averages of the 

form (u(x){(t)> for several forms of u(x). Hence, we first evaluate this 
average for an arbitrary vector function u(x). Since the white noise is 
defined only as a differential for mathematical manipulation, we interpret 
(U(X) ~i(t)> as follows: 

) <u(x) ~,(t)> = mo 3-5 (s) u(x) dwi 
~t 

(3.4) 

822/49/1-2-23 
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where w~ is the Wiener process associated with ~(t). In writing Eq. (3.4), 
we first integrated u(x) ~g(t) with respect to time and then differentiated it 
again. Since Eq. (3.3) is a Stratonovich equation, all the integrals arising 
from it are Stratonovich integrals (unless deliberately transformed to 
another representation). Based on the definition of the Stratonovich 
integral, (8) Eq. (3.4) is written as 

(u(x)~i(t))= lira ( 1 ) ~,~o ~ [u(t)+u(t+Jt)] ~w, (3.5) 

where 

Aw i= wi(t + A t ) -  wi(t ) (3.6) 

is the increment of the Wiener process. The statistical properties of the 
Wiener increment are 

(Awi(t)) = 0  (3.7) 

(Awi(t) Aw](t + At) ) = 2D o At + O(At 2) (3.8) 

Next we expand u(t + At) as a Taylor series around u(t): 

~u Ax; u(t+At)=u(t)+~ ~x] t+O(At2) (3.9) 

Using Eq. (3.9) in (3.5) and recognizing that Axj= S:] At, we obtain 

(u(x)~i(t))=~,~olim ( 1  [A_t u( t )+~l~3UFj( i~)At  

+ ~ g]k(x) Aw~l Awi) (3.10) 
k 

Recall that we are dealing in this equation with delta-correlated noise and 
therefore quantities at different times in Eq. (3.10) can be averaged 
separately. Specifically, 

(u(t) Awi(t) ) = (u(t) )(Awi(t) ) 

because Awi(t) is the increment occurring after time t. Finally, using 
Eqs. (3.7) and (3.8), we have 

(U(X) ~i(t) ) = ~ Dik l gjk O-~jXj) (3.11) 
jk 
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From this general result for an arbitrary u(x) we get the moments we 
need in the linearization scheme as follows: 

/ Ogo\ (g~( t ) ) ,=  E Dj, \ g~, ~-~xk / ) (3.12) 
jkl 

( g ~ x T ) i j . = ~ ' O k m ( X j g l m ~ ) ~ - L O k m ( g i k g j m )  (3.13) 
klm km 

where the subscripts i and j on the left-hand side indicate the ith com- 
ponent of the (i, j)th element. 

For Eq. (3.10) we tacitly used the nonlinear equation (3.3) for xj. This 
is appropriate for evaluating moments of the type (g(x)~( t ) )  arising from 
the nonlinear equation. Clearly the left-hand side of Eqs. (2.4)-(2.6) involve 
moments that arise from the linear portion of the error expression (2.3). In 
evaluating these quantities, therefore, we should use for xj the linear 
equation 

= a + llx + y~(t) (3.14) 

When this linear equation is used, the result corresponding to Eq. (3.11) is 

jk 

When all these results are used, in the case of white noise Eq. (2.4) becomes 

a + I~(x) = ( f )  (3.16) 

and (2.5) becomes 

a ( x  r ) + I~(xx v ) + yDy r =  (fx T ) + (gDg v) (3.17) 

where f is a vector with components given by 

f,.(x)=Fi(x)+~Djtg~,( D ) jk, ~ g~j (3.18) 

To find the white noise limit of Eq. (2.6) let us write it as 

Efl(x~r)+~'(~v)][(F~V)+(g~T)]-l=l (3.19) 

As before, we replace (r with 

(Aw~Awj) 1 
(At) 2 = ~  I-2D,j+O(At)] (3.20) 
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and (go~k~t) with 

1 1 
2(At)2 ([gij( t)  + go(t+At)] AwiAwj)--~ [(go) Do+ O(At)] (3.21) 

After using (3.15), (3.20), and (3.21) in (3.19) and taking the limit At--+ O, 
we find 

7 =  ( g )  (3.22) 

Summarizing, the present linearization scheme for equations with white 
noise is given by 

a + I I (x)  = ( f )  (3.23) 

a(X T) -I- ]~(XX T) -}'- 7/)77-= ( fx  T) + (gDg r )  (3.24) 

= ( g )  (3.25) 

This differs somewhat from the results reported earlier in Ref. 7 based on 
our work confined to white noise equations alone. The differences are 
discussed in the Appendix. Equations (3.23)-(3.25) yield for a and Ii 

il(t) = [ ( f x  r )  - ( f ) ( x  r )  + (gDg r )  - ( g )  D ( g r )  ] 

X [-(XX T) -- ( X ) ( x T ) ]  1 (3.26) 

a(t) = ( f )  - [~(t)(x) (3.27) 

4. F L U C T U A T I O N - D I S S I P A T I O N  RELATION ( F D R )  

As we did earlier, <7) let us consider the set of equations 

2 = p  (4.1) 

[2= _V'(x)_B(x)p+Al(X)~(t)+A2(x)r (4.2) 

This set describes the time evolution of the displacement x and momentum 
p of an anharmonic oscillator of unit mass moving in a potential V(x). 9 
The oscillator is also influenced by a heat bath consisting of a large number 
of harmonic oscillators with a broad frequency distribution. The fluctuating 
terms represent the energy input to the anharmonic oscillator from the heat 
bath due to nonlinear interactions. The term -B(x)p describes the dis- 
sipation of energy as a frictional force exerted by the heat bath oscillators. 
These two transactions of energy are balanced and this is reflected by the 
relation 

B(x) = )~11A~(x) + 2,~12A l(x) A2(x) + )~22A~(x) (4.3) 
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where 
( ~i(t) ~j(t') ) = 2kB TZij 6 ( t -  t') (4.4) 

and T is the temperature of the heat bath. Equation (4.3) is part of the 
formulation of the SDE describing the anharmonic oscillator and is the 
familiar FDR. This relation ensures eventual equilibration of the oscillator 
with the heat bath environment. 

We replace Eqs. (4.1) and (4.2) with the linear set 

"~ ~" ~1 -[- /~11X "[- f112P -I- ~)11 ~1(t)  -~- 'Y,2 ~2(t)  (4.5)  

t5 = c~ 1 + fl=l x + fl= p + 721 ~l(t) + 722 ~=(t) (4.6) 

We can now proceed to obtain expressions for ~i, fi~, and 7,j and we can 
then use these results to calculate first and second moment equations from 
the linearized equation as well as the average energy envelope 

( E )  = �89 + ( V ( x ) )  (4.7) 

for certain V(x) and Ai(x). These steps yield the same results obtained 
earlier. 

An important conclusion that was reached earlier and that we wish to 
reiterate within the present scheme is that the coefficients flu and 7~ in the 
linear equation satisfy a FDR. Equations (3.16) and (3.17) yield 

O~ 1 ~-0,  /~11 = 0 ,  /~12 = 1, ~)11 =0,  712--0 (4.8) 

:~2 = E ( O  )( ( x 2 )  ( p  2) - ( x P  ) 2) - ( x Q  )(  ( x ) ( p  2 ) - ( xp  ) ( p  ) ) 

+ ( ( p O )  + R ) ( ( x ) ( x p )  - ( x = ) ( p ) ) ] / D E W  (4.9) 

f121 = E--(Q)((x) (P 2 ) - ( p ) ( x p ) ) +  ( x Q ) ( ( p  2) - (p )2 )  

- ( ( p Q )  + R ) ( ( x p )  - ( x ) ( p ) ) ] / D E T  (4.10) 

fi22 = [ ( Q ) ( ( x ) ( x p )  - ( x 2 ) ( p ) )  - ( x Q ) ( ( x p )  - ( x ) ( p ) )  

+ ( ( p O )  + R ) ( ( x  2 ) - -  ( x ) 2 ) ] / D E T  (4.11) 
where 

and 

Q = - V ' ( x )  - B(x)  p (4.12) 

R = 2kB T E A n ( ( A  2) - (A1)2) + 221=((AIA= ) _ (A~)  (A=))  

+ 222((A~) - (Az)2)J  (4.13) 

DET = ( x = ) ( p  2) - ( x p )  2 -  ( x ) 2 ( p  2) 

+ 2 ( x ) ( p ) ( x p ) -  ( x 2 ) ( p )  2 (4.14) 
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(The expressions for c~2, fl21, and J~22 differ from our previous expressions (7) 
by the presence of R.) Finally, 

721 = (A1)  (4.15) 

~)22 = (A2)  (4.16) 

Therefore, the linearized equation is 

2 = p  (4.17) 

P = ~ 2 + / ~ 2 1 - t ' - f 1 2 2 P +  (A1) ~l(t)-[- (A2)  ~2(t) (4.18) 

The coefficients ~2, /~21, and/322 involve higher order moments of x and p, 
which we do not know exactly. The power of the linearization method rests 
on the fact that these moments can be evaluated approximately using the 
linearized equation, because the distribution corresponding to the linear 
equation is Gaussian at all times. 

Now we wish to show that/322 is related to the coefficients of the noise 
( A I )  and (A2)  at equilibrium in a manner analogous to the original 
FDR. Since the coefficients c~2, /321, etc., are time-dependent, the 
Fokker-Planck equation is of the form 

0 
-~ P(x, p, t) = L(t) P(x, p, t) (4.19) 

where L(t) is a time-dependent differential operator. Therefore, the 
stationary distribution satisfies 

L(oe)P(x ,  p, oo)=0  (4.20) 

The importance of the FDR is reflected in the fact that it ensures a solution 
to Eq. (4.20). It is sufficient for solving (4.21) to evaluate the t ~  oe limit of 
/322(t), (A1),  and (A2).  Equation (4.11) gives/~22(t) in terms of moments 
of x and p. These moments can be factored into the first and second 
moments alone, because of the Gaussian nature of the solution to the 
linearized equation. By directly solving the moment equations for the 
stationary values, we get 

( p ) s  = (Xp)s=O (4.21) 

Using this and the factorizability of Gaussian moments, we also get 

(p2)s  = 2kB T (4.22) 
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Finally, from Eq. (4.11) through similar arguments we have 

lim fi22(t)=-[211(AH)2-2212(A1)(A2)+222(A2) 2] (4.23) 
t ~ o o  

which is the required FDR. 

5. BISTABLE S Y S T E M S  A N D  S Y M M E T R Y  

The method of linearization can be used only in studying closed 
systems that attain a unique stationary state. For example, it cannot be 
used for thermodynamically open systems, which can exhibit multiple 
stationary states. ~5) The statistical distribution corresponding to such a 
situation consists of multiple peaks. Since the distribution obtained from a 
linear SDE is always Gaussian and hence has a single peak, in these 
situations the replacement equation necessarily has to be nonlinear. 

Let us consider, for example, the equation 

(s) 2 = F ( x ) + g ( x ) ~ ( t )  (5.1) 

or equivalently, 

(I) 2 = f ( x )  + g(x) ~(t) (5.2) 

where 

f ( x )  = F(x) + Dgg' (5.3) 

and the (I) on (5.2) indicates that it is written as an It6 equation. Let us 
suppose that (5.1) has no low-order moment instabilities and that f ( x ) =  0 
has three roots. The simplest equation in this class is 

-?~ = 0~ 0 -~ ~1 x -I- ~2 x 2  "~- 0~3 x 3  "t- tiC(t) (5.4) 

which arises from a two-well potential. Though Eq. (5.4) cannot be solved 
exactly for the time-dependent solution, much insight has been obtained by 
approximation methods. We propose to replace the general equation (5.1) 
with Eq. (5.4) and select c~ i and fl so that the mean square difference 
between the equations is minimized. 

The scheme of Section 3 is applicable only when the replacement 
equation is linear. To use the nonlinear equation (5.4), we again perform 
the error minimization. The error is 

3 

= ~. ~ x  k - r ( x )  + ( p -  g) ~(t) (5.5) 
k=O 
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Minimizing (e 2) with respect to c~ k, we have 

_/<x> <x'> <x'> <x4> / /~q+/3l <x2i'>]: I<xF>+<xg~>l 
Wx2e>+(x2g~)# WX2> (X 3 ) (X4> (X5)# 10~21 l ~X2i:~-> 
~(x3F) q- (x3g~ 5/ t(x3) ( x45 (xS) (x6) /  \~31 t<x3i;)/ 

Averages involving ~(t) are calculated using 

(u(x) {(t) )= D(u'(x) g(x) )  

on the right-hand side and 

(u(x) {(t) ) = D/3(t)(u'(x) ) 

(5.6) 

(5.7) 

(5.8) 

on the left-hand side, as before. Minimizing (e 2) with respect to/3 gives 

/3= <g)  (5.9) 

Using Eq. (5.7)-(5.9) in Eq. (5.6), we find for the latter 

1 , <x> <x2> <x3>\/% /<i> \ / <x> <x2> <x,> <x4>|]~l/+|<v> / 
/<x2> <x,> <x4> <x, U D  # l<x>l 

\ ( X  3 ) (X 4 ) <X 5 ) (X6 5 i \~3 i \ (x3f ) i  

+D (g25--(g)2 =0 

I 2((xg2)-- (x)(g)2) I 
\3((x2g 2 ) -- (x2)(g)2)l 

(5.10) 

If the original equation (5.1) involves a symmetric potential [V(x) 
such that V'(x)= - f ( x ) ]  and the initial distribution is symmetric about 
x = 0, then the replacement equation (5.4) should also involve a symmetric 
potential, i.e., c% = ~2 = 0-(7) Suppose f(x) is an odd function of x and all 
odd moments of the initial distribution P(x, 0) vanish. Our argument is 
based on the fact that the matrix in Eq. (5.10) contains the odd and even 
moments regularly arranged in the lattice and that the vector involving f 
also alternates between odd and even symmetry. The terms involving g in 
Eq. (5.10) have exactly the same parity as the corresponding moments 
involving f These facts lead to the conclusion that if ~o and ~2 are zero 
initially, then they remain zero always, and the symmetry present in the 
original problem is thus preserved. 
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6, G A U S S I A N  CLOSURE FOR CLOSED S Y S T E M S  DRIVEN BY 
COLORED NOISE 

Now we return to the general treatment in Section 2, i.e., we remove 
the restriction to white noise. The general replacement scheme given by 
Eqs. (2.4)-(2.6) is written in terms of moments involving the noise q(t). For 
practical use of these equations these moments should be expressed in 
terms of the moments in xi alone. In Section 3 we evaluated these moments 
in the case of white noise. Here we wish to evaluate them for a more 
general stationary Gaussian noise. Therefore let us assign the following 
statistical properties to q(t): 

(q , ( t ) )  = 0  (6.1) 

(r/i(t) ~/j(t')) = 2D~j(~(t- t') (6.2) 

and all higher cumulants are zero. The correlation times are defined as 

r U = r~b~(r) dr (6.3) 

The white noise is a special case with a delta function for Oo.(t-t'), i.e., 
r~j=0. Subsequently we specialize to the Ornstein-Uhlenbeck stationary 
process, where ~b~(t- t') is an exponential function. Even though Gaussian 
noise with short correlation time seems to be only a small class of random 
functions, it covers many situations encountered in physical and chemical 
studies. 

When q(t) is Gaussian with short correlation times, one can derive an 
approximate equation of evolution for the probability density in phase 
space valid to lowest order in the D,j analogous to the Fokker-Planck 
equation. For the system (2.1) this approximate equation is 

O P ( x ' t ) = [ - ~ " ~ f i ( x ' + ~ D ~ ( x ) ]  L ~ ox~ . . . .  (6.4) 

where f/(x) and D•(x) are given 

fi(x) = F/(x) + ~ ~. ~jk ~'jk gij(x) Ql;)(x) (6.5a) 
j k l  n = 0 

Oil(X) = 2 ~.. r}~)Djk g0.(X) Q~)(x) (6.5b) 
j k  n = O  

Here the r}~) are moments of the correlation function defined by 

- ( ' ) -  C~bjk(~ ) dr (6.6) 
~ j k  - -  
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and the O!n) are generated by the recursion relation x- , t j  

Q,~i)(x) = g,7(x) (6.7) 

ij ~- ~:~jk ~OXj  ~ i k  / C (6.8) 

From the Fokker-Planck equation (6.3) we can derive the following 
moment equations: 

d 
dt ( x )  = ( f )  (6.9) 

d ( x x r )  = ( f x r )  + (xfV)  + ( D ( x ) )  + ( D r ( x ) )  (6.10) 
dt 

These moment equations, unlike Eqs. (2.7) and (2.8), involve the moments 
of x only. Since both this set and the set of moment equations in Section 2 
are exact (to order D0), we can conclude by comparison that 

Z ( g 0 ~ / / ) = ~ D / k  ~ j k  go Q(k~ ) (6.11) 
j k l  n = 1 

and that 

~ (gij~]jXs =ZDji -~..~jk gij Q~)x: +(Dis(X)) (6 .12 )  
j j k l  n= 1 

In the case of white noise, the moments of the correlation function vanish 
except for the zeroth one, i.e., when ~b(r)= 6(z), 

r(0) 1 (6.13) U = 

r(~') = 0, n~> 1 (6.14) tj 

In this case Eqs. (6.11) and (6.12) properly reduce to Eqs. (3.12) and (3.13). 
Equations (6.11) and (6.12) also simplify when q(t) is an exponentially 
correlated Gaussian noise, i.e., an Ornstein-Uhlenbeck (OU) process. The 
O U  correlation function is 

q~ij(/-- t ' )  = (1/'C0-) e x p ( - I t -  t'l/*a) (6.15) 

In this case, the moments of ~bij are given in terms of the nth power of the 
correlation time rig by 

z<n)o -- nV. ~ (6.16) 
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For a single-variable process, Eq. (6.5) can then be expressed in the more 
compact form 

~F (x )  I d I l g(x) (6.17) D(x) = ~ g - ~  1 + rr(x)  ~ F(x) 

In principle, Eqs. (6.11) and (6.12) can be substituted into 
Eqs. (2.4) (2.6), thereby obtaining equations for a, p, and ~/in terms of the 
moments of x alone. However, if we are only interested in the first and 
second moment equations, a shortcut can be used. We have already seen 
that the lowest moment equations are retained by the linearization 
procedure. This means that when the final expressions for a, p, and ~ are 
substituted in the moment equations [Eqs. (2.9) and (2.10)] obtained from 
the linearized equation, we should get exactly Eqs. (6.9) and (6.10), which 
we obtained straight from the Fokker-Planck equation (6.3) corresponding 
to the nonlinear SDE. Treating Eqs. (6.9) and (6.10) as having arisen from 
the linearized equation, we can factorize the higher moments on the right- 
hand side by invoking the Gaussian nature of the solution. Therefore, ( f ) ,  
( fx r ) ,  and (D(x) )  can be expressed in terms of ( x )  and (xx r )  alone. 

7. AN E X A M P L E  

We apply the replacement procedure developed here to a simple non- 
linear SDE and illustrate the method of Gaussian closure. Let us consider 
the SDE 

2 = - a x  - bx 3 -t- tl(t) (7.1) 

where r/(t) is an Ornstein-Uhlenbeck process and a, b > 0. The correlation 
function for this process is 

~b(t) = (D/r) e -t/~ (7.2) 

where r is the correlation time. The distribution corresponding to (7.1) is 
expected to be singly peaked. Therefore we apply the linearization 
procedure to this example. Linearization amounts to approximating the 
singly peaked distribution with a Gaussian distribution. 

The approximate Fokker-Planck equation corresponding to Eq. (7.1) 
is 

P(x, t) = -~x (bx3 + ax) + ~x 2 D(x) P(x, t) (7.3) 
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where 

D(x)  = D { 1  - ( a +  3bx z) T + O(r2) } (7.4) 

Equation (7.3) can be solved exactly for the stationary distribution to give 

1 fx  -- ay -- by 3 
Ps(X) = ~ exp D[1 + (a - 3by 2) ~] ay 

=exp{ ax2 bx4 [(3b a2 
2D 4D -- 2-D) x2 

ab x4 __ b 2x6 ~ } 
- - D  -2-D--J r + O(r2) (7.5) 

up to a normalization constant. We apply the linearization and compute 
the stationary distribution to compare with the solution (7.5). We also 
compare the steady-state moments (x )~  and ( x 2 ) ,  for several sets of 
parameter values. Since P~(x) is an even function of x, 

( x ) , = O  (7.6) 

The second moment ( x 2 ) ,  can be calculated by two simple numerical 
integrations. 

The first and second moment equations from Eq. (7.1) are 

d 
dt ( x )  = - a ( x )  -- b ( x  3)  (7.7) 

,4 
~~ ( x  2 ) = - -2a (x  2 ) - -  2 b ( x  4 ) + 2 ( D ( x ) )  
dt 

(7.8) 

The linearized equation is 

2 = c~ + fix + q(t) (7.9) 

where 

= - b  <x2><x3>- <x4)<x> 
(x2) _ <x)2 (7.10) 

<x3>(x) - <x 4) 
fl= - a + b  ( x 2 ) _  (x)2 (7.11) 
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The first and  second m o m e n t  equa t ions  ob t a ined  f rom the l inear  equa t ion  
are  

d 
dt <x> = ~ +/3<x> (7.12) 

cl <x2> = 2e<x> + 2•<x2> + 2<D(x) > (7.13) 
dt 

After subs t i tu t ing  for c~ a n d / 3  in (7.12) and  (7.13) we get exact ly  (7.7) 
and  (7.8). Since the  l inear ized equa t ion  has  a G a u s s i a n  solut ion,  ~ a n d / 3  
can be eva lua ted  using G a u s s i a n  fac tor iza t ion  for the h igher  moments .  

1,0 

0.8 

0.6 

<X2>s  

0.4 

0.2 

b=O 

b=O.I 

- b = 0.25 

. . . . . . . . . . . . . . .  
b=0.5 

b= 1.0 

. . . . . . . . . . . . .   To-- 

0 I I I I I 1 I 
0 .01 .02 .05 .04 .05 .06 .07 

T 

Fig. 1. Comparison of <X2)s from (--) the "exact" [Eq. (7.5)] and (--) approximate 
[Eq. (7.17)] expressions for various values of b, with D = 1. The two results of course coincide 
when b = 0. 
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After this factorization the moment equations yield for the stationary 
moments 

a ( x ) ~ - b ( x ) ~ ( 3 ( x 2 ) s - Z ( x ) 2 ) = O  (7.14) 

a ( X 2 ) s - b ( 3 ( x 2 ) Z ~ - 2 ( x ) 4 ) + O ( 1  - a z - 3 z b ( x 2 ) s ) = O  (7.15) 

The solution of (7.14) and (7.15) is 

( x ) s = 0  (7.16) 

( x2 ) s - - 2 a  - 6b Dr [ (2a + 6b Dr ) 2 + 48bD( 1 - az)] 1/2 
12b (7.17) 

Both the exact (to order r) solution and the linearized solution give 
(x )~=0 .  The second moments (x2)s are compared in Fig. 1. We also 
compare the stationary distributions in Figs. 2 and 3. When b =0, the 

O. 5 [ 

L / " \  

0.4 / ~  

0 .3  

Ps(x) 

0.2 

O I 

Fig. 2. 

o ~ .t.__..___a_."~.a 
-3 -2 -I 0 I 2 3 

x 

Comparison of (- -) the stationary distribution given by the linearized equation with 
( ) the "exact" distribution, r = 0.02, b = 0.1, and D = 1. 



Statistical Replacement 

0.8 

365 

Fig. 3. 

Ps(x) 
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0.4 
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f ' \  
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/ 
I I 

-3 -2 -I 0 I 2 3 

Comparison of (- -) the stationary distribution given by the linearized equation with 
(--) the "exact" distribution, r = 0.05, b = 1, and D = 1. 

original equation is linear and therefore the linearized solution must agree 
with the exact solution. The figure clearly shows that the deviations 
become larger as b increases. Moreover,  for a given b, better approximation 
is achieved for smaller ~. 

C O N C L U S I O N  

The method of statistical replacement reported here is applicable to 
equations in which the noise term can have general statistical properties. 
We have derived practical application methods for the cases of white noise, 
for an Ornstein-Uhlenbeck process, and for a multidimensional Gaussian 
process with finite correlation times. We found that the white noise limit of 
the present scheme is different from our earlier scheme, which was 
developed exclusively for equations with white noise. Nevertheless, all the 
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final conclusions we deduced earlier remain valid in the light of the new 
scheme. 

The most powerful replacement is linearization, i.e., replacement with 
a linear equation. This is because the Gaussian nature of the solution 
permits a practical procedure for obtaining closed expressions for the first 
and second moments. 

The drawback in this method is the lack of an a priori measure of the 
accuracy of the approximation. Minimizing 0; 2) implies that ( ~ ) =  0, i.e., 
the difference between the replaced and replacement equations vanishes on 
the average. However, it is not clear how the error made in higher 
moments of e translates into the errors made on the moments of x. To 
apply the linearization method, for example, one should know beforehand 
that the true solution does not deviate significantly from a Gaussian shape. 
This is the basis for our criterion that linearization can be applied safely 
only to thermodynamically closed systems. It is not easy to extend similar 
criteria to nonlinear replacements. 

A P P E N D I X  

In place of Eqs. (3.23)-(3.25), in Ref. 7 we obtained the expressions 

a + p { x ) =  ( f )  (A1) 

a(x  T) + p(xx r )  + 7D7 r= (fx v) + (gDg r )  (A2) 

yO7 T= (gDg r) (A3) 

and the expression for p in Ref. 7 did not contain the last two terms in the 
numerator of (3.26). However, both schemes reproduce the first and second 
moment equations exactly. This is because the change due to [I cancels the 
change due to a in both moment equations. 

Equations (A1)-(A3) were based on separate consideration of the drift 
and diffusion contributions. If we had Eq. (A3) in place of Eq. (3.22), then 
the two schemes would be identical. This may lead to the thought that if 
we had minimized the error in g (i.e., minimized g -  7) rather than in the 
diffusion function gDg r, we would have obtained the present results earlier, 
but this is easily shown not to be the case. Thus minimizing the combined 
error in both terms of the equation and minimizing drift and diffusion 
contributions separately produces different expressions for a, p, and 7 even 
though the moment equations are the same. 

To say this in different terms, let us decompose e in Eq. (2.3) as 

e = e I + e 2 (A4) 
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where 

~1 ~-- ~ "qL ]JX - -  F (  X ) ( A 5 )  

Here we have minimized ~1 ~r  + ~2e~" + ~1 ~-  + e2e~. In  Ref. 7 we minimized 
~ 1 ~ + % ~  only. This was deliberately done because we did no t  under-  

s tand then how to treat the cross terms involving white noise explicitly. 
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